

Digitalisierung, Landwirtschaft und Nachhaltigkeit

Praktikerdialog Wasser-Landwirtschaft, 07.10.2022

Fraunhofer IESE

Das Institut für Software- und Systementwicklungsmethoden

Unsere Mission:

Angewandte Forschung für innovative Lösungen zur Gestaltung verlässlicher digitaler Ökosysteme

- Gegründet 1996 mit Sitz in Kaiserslautern
- Über 200 Mitarbeiter aus mehr als 10 Nationen
- Teil des Fraunhofer-Verbunds luK-Technologie Gastmitglied im Fraunhofer-Leistungsbereich Verteidigungs- und Sicherheitsforschung
- Mitglied der Fraunhofer-Allianzen Big Data und Künstliche Intelligenz sowie Verkehr
- Beteiligt an dem Fraunhofer Strategischen Forschungsfeld »Intelligente Medizin« und dem aktuell entstehenden Leitmarkt »Ernährungswirtschaft«

Unsere wichtigsten Anwendungsfelder:

- Automotive & Nutzfahrzeuge
- Automatisierung, insb. Industrie 4.0
- Smart Farming und Ernährungswirtschaft
- Gesundheitswesen
- Software & Platform Business
- Sicherheit und Verteidigung

Vorstellung des Lehrstuhls Digital Farming, TU Kaiserslautern

- Forschungsschwerpunkte: **Software- und Systems Engineering** im Bereich Digital Farming
 - Anforderungsanalyse für verschiedene Akteure im landwirtschaftlichen Ökosystem
 - Verbesserung der Interoperabilität und Vernetzung zwischen Akteuren und Systemen
 - Verbesserung der Nutzungsakzeptanz von Digital Farming Lösungen (u.a. FMIS, Entscheidungsunterstützungssysteme, Landmaschinen)
 - **Datenmanagement** für innovative und nachhaltige Lösungen in der Lebensmittelkette

Motivation

Digitale Transformation

Insektensterben

Nitratbelastung

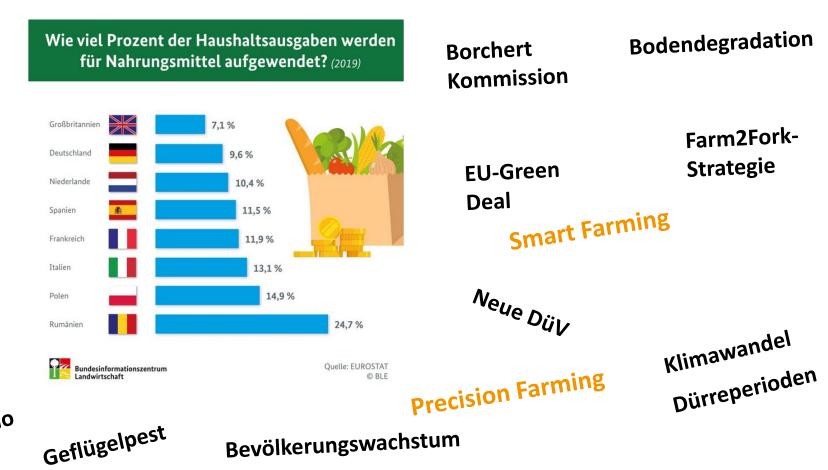
Digitale Ökosysteme

Glyphosat-Verbot

Digitalisierung

Biodiversität

Resistenzen


Afrikanische Schweinepest

Tierwohl

Ernährungssicherheit

Farming 4.0

Bauerndemo

Bevölkerungswachstum

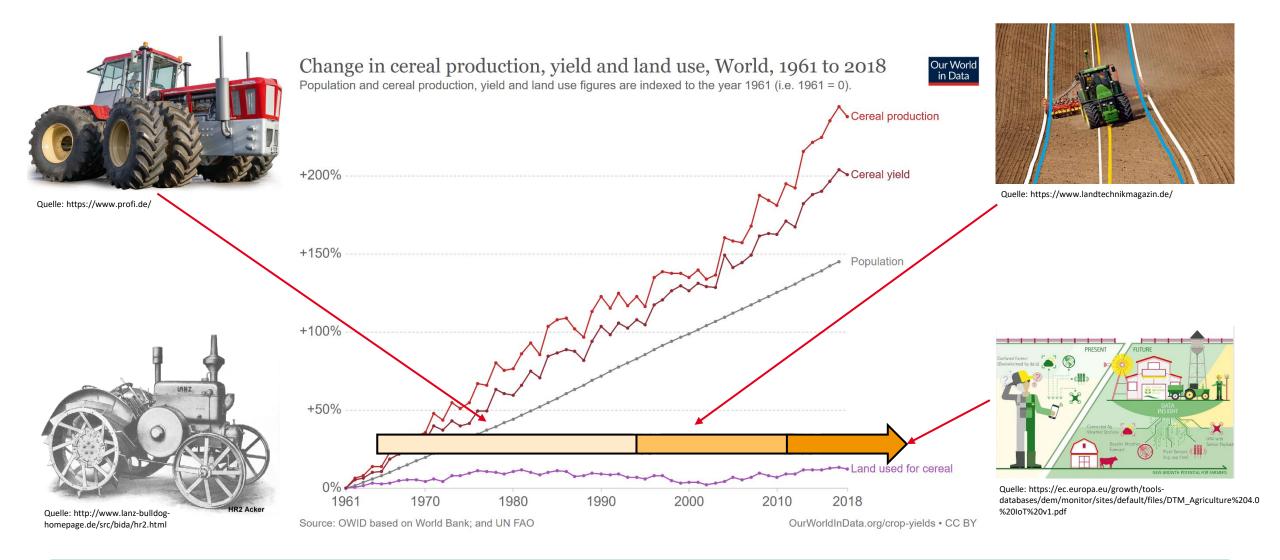
»Digitalfotografie wird den analogen Film nicht verdrängen«

-- George M. Fisher, CEO von Kodak im Jahr 1997

Digitalisierung – rapide Entwicklungen

Papstwahl 2005

Luca Bruno (AP)


Papstwahl 2013

Michael Sohn (AP)

Produktivitätssteigerung in der Landwirtschaft

Digitale Transformation

Mit Hilfe von Software entstehen digitale Ökosysteme, die neue Geschäftsmodelle mit digitalisierten Prozessen realisieren.

Digitale Digitale Digitale Daten/Produkte Informationen Geschäftsmodelle **Prozesse** Digitale Digitalisierung **Digitalisierung Transformation** von Daten von Prozessen **Spotify** Technologie verändert Technologie verändert Technologie verändert Medien & Daten durch Märkte und Industrien Wirtschaft & Gesellschaft Digitale Produkte durch Digitale Prozesse durch Digitale Geschäftsmodelle

Digitale Transformation in der Landwirtschaft

Informationen

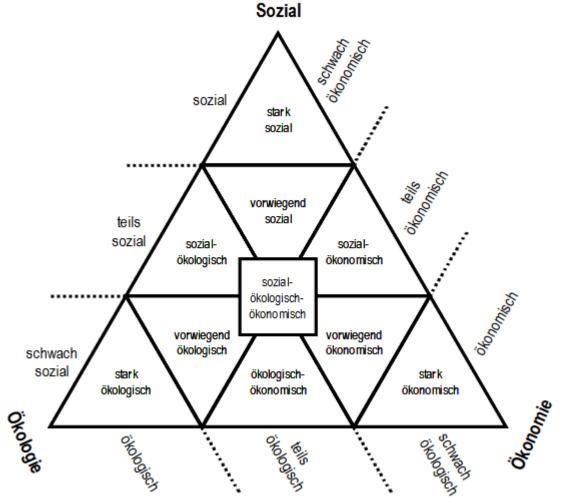
Digitale Daten/Produkte

Digitale Prozesse Digitale Geschäftsmodelle

Digitalisierung
Von Daten

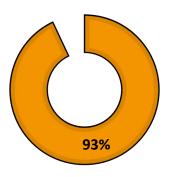
Technologie verändert Medien & Daten durch Digitale Produkte

Technologie verändert Märkte und Industrien durch Digitale Prozesse

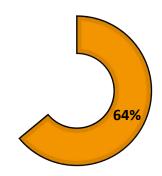

Digitale Transformation

Technologie verändert
Wirtschaft & Gesellschaft
durch Digitale
Geschäftsmodelle

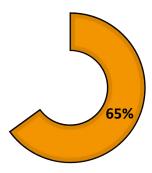
Nachhaltigkeitsdreieck

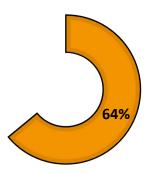


Systemdenken rückt immer mehr in den Vordergrund!


Wo sehen Landwirte Potentiale der Digitalisierung

Inwieweit stimmen Sie den folgenden Aussagen zu?




VERBRAUCHER

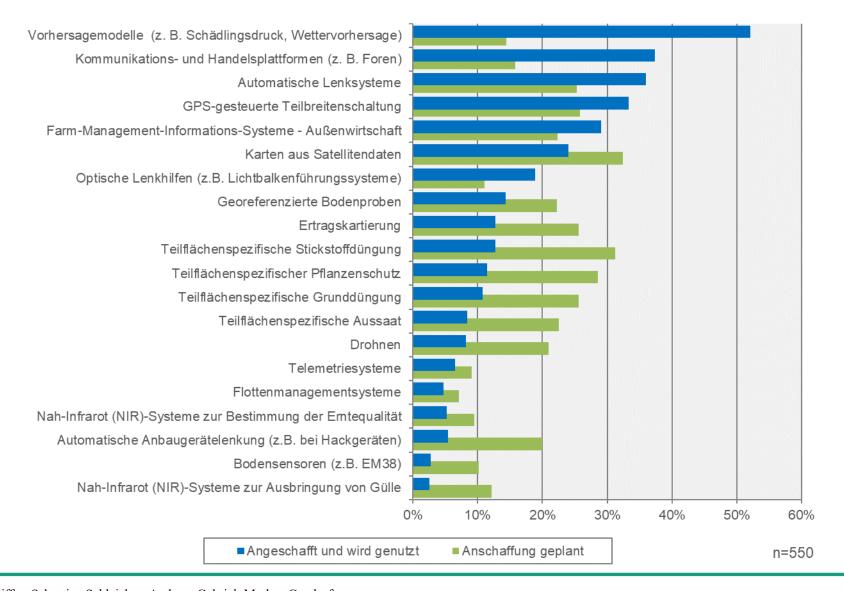
TIERWOHL

BETRIEB

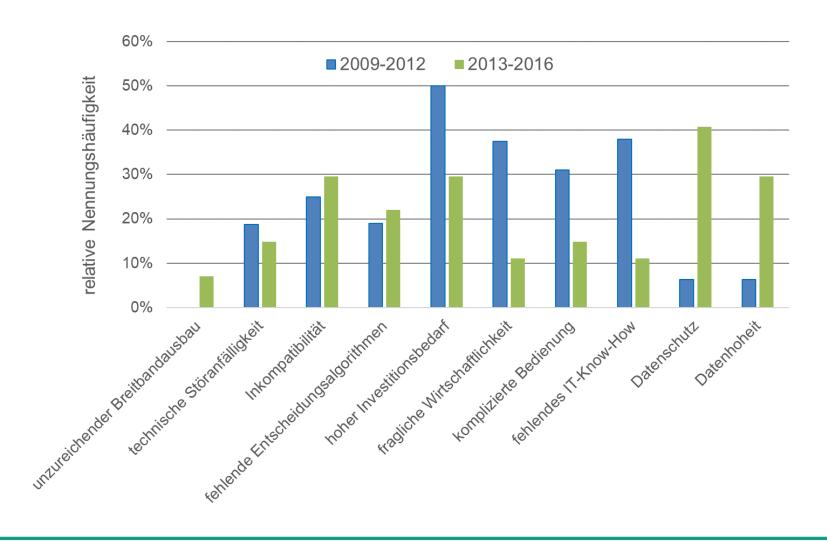
Digitale Technologien helfen, Dünger, Pflanzenschutzmittel und andere Ressourcen einzusparen

Digitale Technologien helfen, die **Qualität** landwirtschaftlicher Produkte zu verbessern

Digitale Technologien können zur Steigerung des **Tierwohls** beitragen Mit Hilfe digitaler
Technologien können
langfristig **Kosten gesenkt**werden.

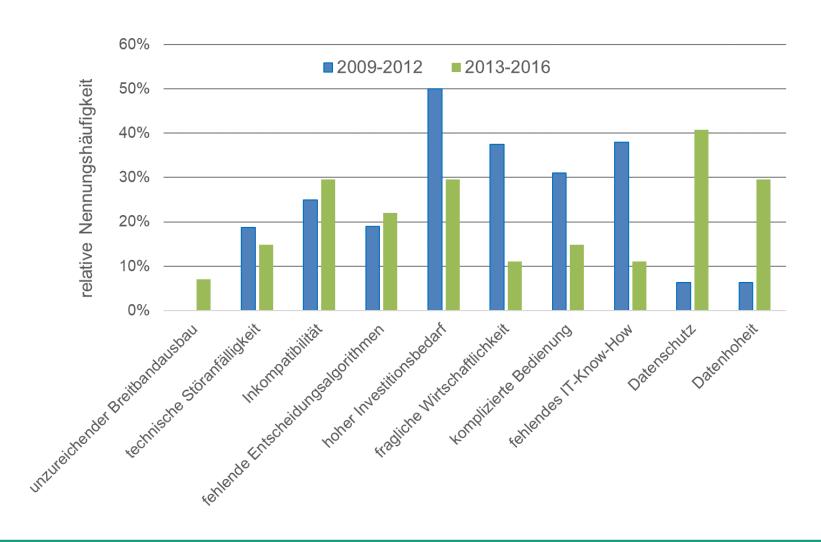

Landwirtschaftliche Betriebe n=500, Quelle: Bitkom Research 2020

Na dann läuft's doch! Oder?


Umfrage zu Adaption von Digital Farming Lösungen

Ein Blick auf die Herausforderungen...

Umfrage zu Gründen/Hindernissen für die Akzeptanz digitaler Technologien in der Landwirtschaft


Hauptprobleme (neben ROI):

- Anforderungen der Landwirte nicht erfüllt
- Interoperabilität von Lösungen
- Datenschutz und Datensouveränität

Umfrage zu Gründen/Hindernissen für die Akzeptanz digitaler Technologien in der Landwirtschaft

Hauptprobleme (neben ROI):

- Anforderungen der Landwirte nicht erfüllt
- Interoperabilität von Lösungen
- Datenschutz und Datensouveränität

Interoperabilität

"interoperability. The ability of two or more systems or components to exchange information and to use the information that has been exchanged."

■ IEEE Standard Computer Dictionary, 1990

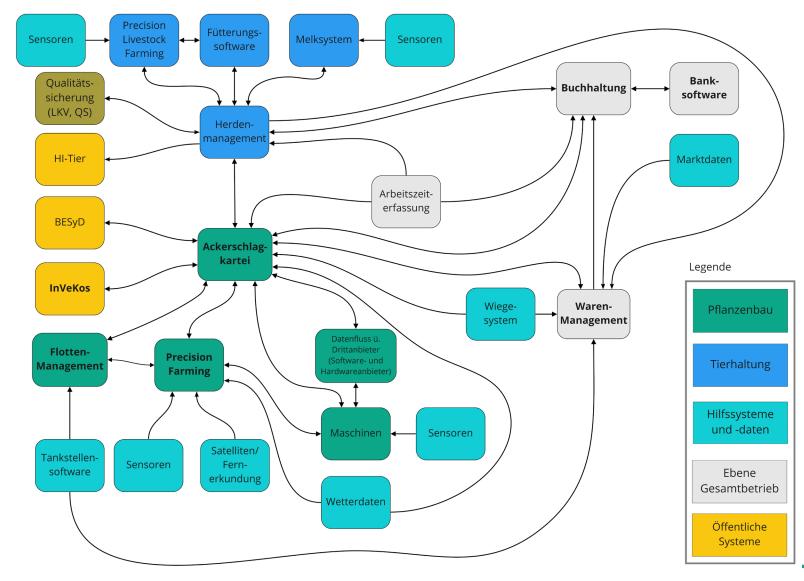
Pragmatische Interoperabilität

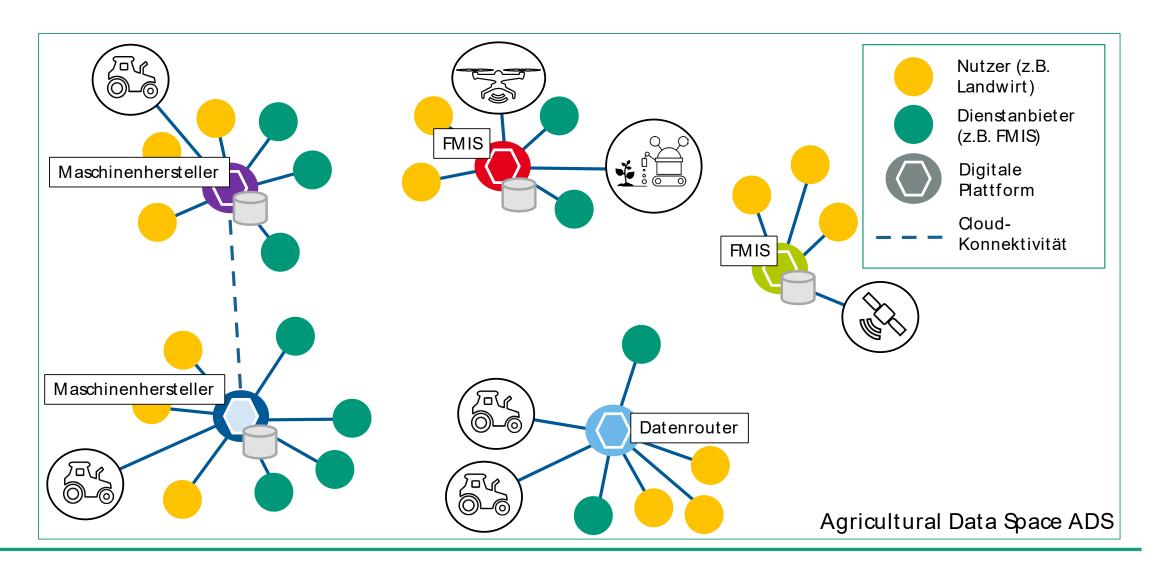
Es wird auf Nachrichten richtig reagiert, Systeme arbeiten nahtlos zusammen und Prozesse können interagieren

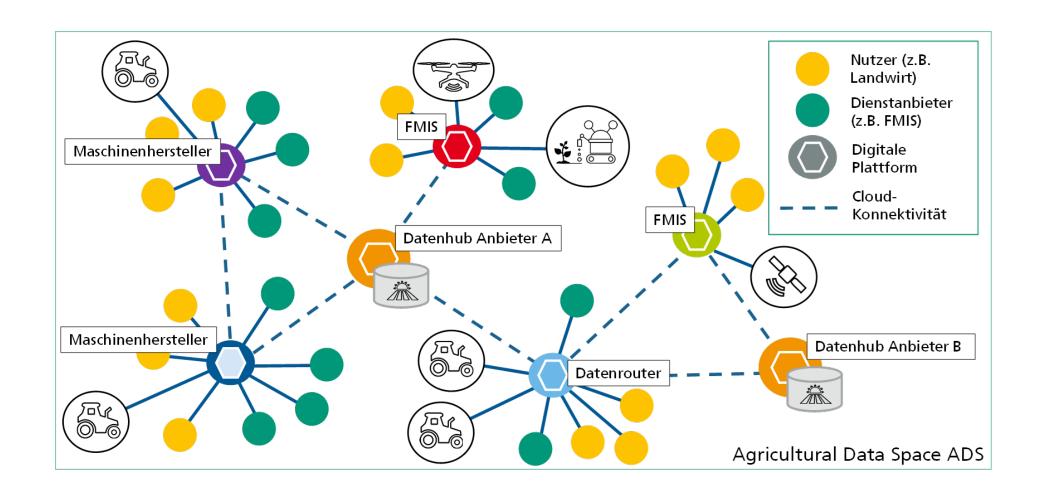
Semantische Interoperabilität

Die enthaltenen Informationen werden auch tatsächlich verstanden und richtig interpretiert

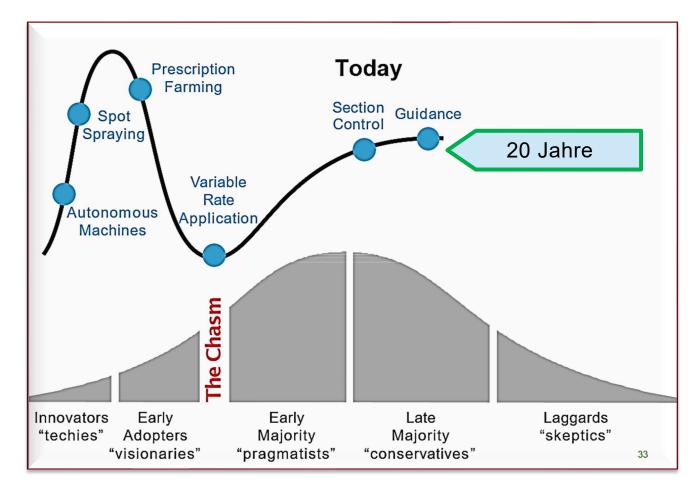
Syntaktische Interoperabilität


Die Nachricht kann grundsätzlich gelesen werden (wird aber vielleicht noch nicht richtig verstanden)


Strukturelle Interoperabilität


Nachrichten können übertragen werden, es besteht eine Protokollvereinbarung zwischen den Systemen

Beispielhafter Überblick Datenflüsse für einen Gemischtbetrieb


»Farming looks easy when your plow is a pencil and you're a thousand miles from the cornfield«

»Landwirtschaft sieht einfach aus, wenn dein Pflug ein Bleistift ist und du tausend Meilen vom Kornfeld entfernt bist«

-- Dwight D. Eisenhower (1890-1969, 34. Präsident der Vereinigten Staaten)

Adaption von Precision Farming Technologie

- Hype Cycle Precision Farming Technologien
- Innovationsauslöser
 - Innovatoren
 - Autonome Maschinen
- Höhepunkt der überhöhten Erwartung
 - Visionäre
 - Prescription Farming
- Trog der Ernüchterung
 - Frühe Mehrheit, risikofreudige Nutzer
 - Variable Rate Application
- Produktivitätsplateau
 - Mehrheit, eher risikoscheu, in der Praxis verbreitet
 - Guidance und Section Control

Source: Prof. Breunig, 2019 nach gartner.com

Digitalisierung in der Landwirtschaft

Biologische Ertragskomponenten

Bestandsdichte

Stark abhängig von Bodenart,
 Konditionen und
 Wasserversorgung

Körner pro Ähre

Abhängig von Stickstoff- und Wasserzufuhr

Tausend-Korn-Gewicht

 Abhängig von Stickstoffzufuhr und Pflanzenschutz

Externe Ertragskomponenten

Boden

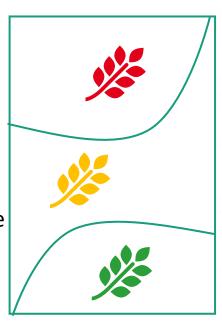
- Ist heterogen
- Angemessene Behandlung verändert sich von Jahr zu Jahr und Frucht zu Frucht

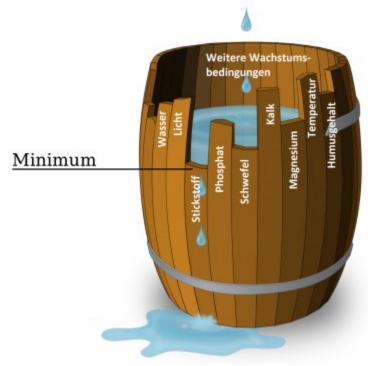
Wetter

- Nicht beeinflussbar
- Liefert Rahmenkonditionen für Feldbehandlung

Düngung / Pflanzenschutz

- Abhängig von Bestandsentwicklung
- Aufgrund der Heterogenität im Feld benötigt jede Pflanze eine angepasste Behandlung




Digitalisierung in der Landwirtschaft

Warum brauchen wir Precision Farming

- Heterogenität innerhalb eines Schlags
- Minimumgesetz nach Liebig:
 - Die knappste Ressource limitiert den Ertrag

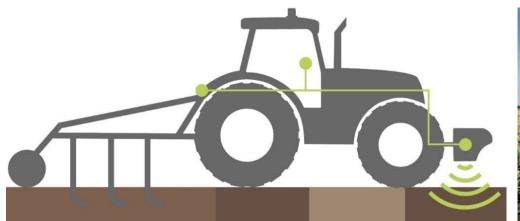
- Schlageinheitliche Bewirtschaftung bringt keine effiziente Bewirtschaftung mit sich
- Nachhaltigkeit und Produktivität werden gesteigert
- → Win Win Situation

Schematische Darstellung des Minimumgesetzes von Liebig (©wikipedia.org | DooFi | bearbeitet durch Fraunhofer IESE

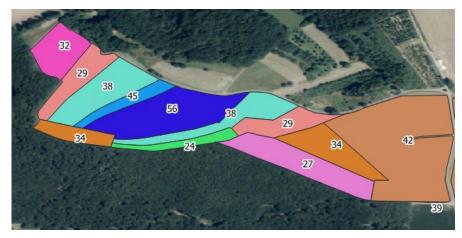
»Supposing is good, but finding out is better.«

»Vermuten ist gut, aber herausfinden ist besser.«

-- Mark Twain (1835–1910, amerikanischer Schriftsteller)


Hauptfelder der Digitalisierung in der Landwirtschaft

- Bildverarbeitung und Sensorik
- Robotik
- Automatisierung
- Big Data


Entscheidungsgrundlagen

Wie erkenne ich Heterogenität im Feld

Grundlagen

Arten von Informationen

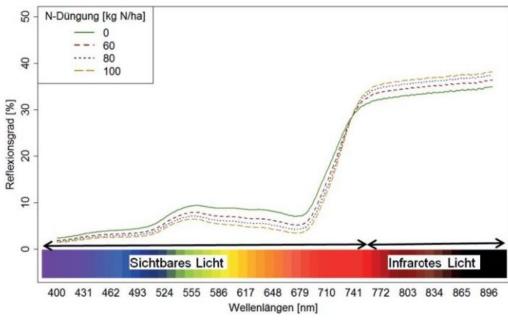
- **Beschreibende** Informationen: stammen aus Nah- und Fernerkundung → zeigen Unterschiede auf erklären sie aber nicht (z. B. elektrische Leitfähigkeit, Biomassekarten, Ertragskarten...)
- **Erklärende** Informationen: zeigen Ursachen für Unterschiede im Feld auf (z. B. Reichsbodenschätzung, Bodenkartierung, Erfahrung des Landwirts)

Kombination beider Informationsarten:

z. B. zur Erstellung von Standortpotentialkarten (Entscheidungsgrundlage für teilflächenspezifische Maßnahmen)

Beschreibende Informationen

Information	Quelle
Luftbilder	Drohnen, Satelliten
Ertragskarten	Ertragskartierung an Maschinen, Satelliten
Biomassekarten	Drohnen, Satelliten, Sensoren
Elektr. Bodenleitfähigkeit	Elektr. Widerstand, elektromagnetische Induktion
Geländemodell und Feuchtigkeitsindex	GPS-Empfänger


Erklärende Informationen

Information	Quelle
Bodenschätzung	Reichsbodenschätzung
Geologische Karten	Geologische Dienste der Bundesländer
Bodenkartierung	Dienstleister

Digitale Hilfsmittel

- Einsatz von Multi- und Hyperspektralsensoren
- Reflexion, Transmission und Absorption sind abhängig von chemischen und physikalischen Eigenschaften des Messobjekts und von der Wellenlänge
 - Ableitung und Rückschlusse auf:
 - Nährstoffversorgung des Bestandes
 - Pflanzenentwicklungen und Ertragspotentiale
 - TM-Gehalt und Inhaltsstoffe (z.B. Gülle, Erntegut)

Quelle: Westermeier und Maidl 2019

Bildquellen:

[4] https://www.zunhammer.de/de/produkte/elektronik/van-control

N-Sensoren

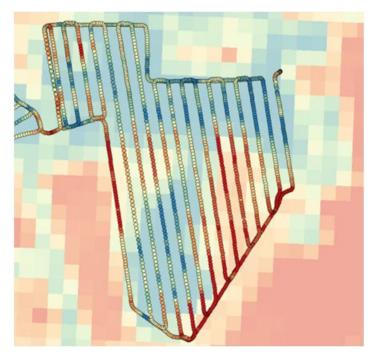
Sensoren am Traktor (Online-Sensoren)

- Montage am Dach oder Frontanbau
- Passive und aktive Sensoren
 - Passiv: Rückstrahlung des Umgebungslichtes, Einsatz nur bei Tag
 - Aktiv: Eigene Lichtquelle Tag und Nacht Einsatz möglich
- Verschiedene Ansätze (Index) zur Ableitung von Zielgrößen
 - Red Edge Inflection Point (REIP-Index)
 - Normalized Difference Vegetation Index (NDVI)
 - Isaria Biomasse Index (IBI) & Isaria Reflectance Measurement Index (IRMI)
- Spektralsensoren Verknüpfungen und Hinterlegung von Karten (Map-Overlay)
 - Ertragspotentiale innerhalb des Feldes
 - Weitere Unterstützung mit Pflanzenwachstumsmodellen und Wettereinflüssen

Fraunhofer

© Fraunhofer IESE

Digitale Hilfsmittel Fernerkundung - Satellit


- Beispielhafte Anwendungsgebiete
 - Erfassung und Überwachung Pflanzenzustände (z.B. Biomasse)
 - Erstellung u/o. Unterstützung bei Applikationskartenerstellung
 - Modellierung Pflanzenwachstum, Ertrag, Abreife, ...
- Satelliten Datenerhebung (kostenfrei)
 - Sentinel 2
 - 10m Auflösung
 - ~5 Tage Wiederkehrrate
 - Landsat 8
 - 30m Auflösung
 - ~16 Tage Wiederkehrrate

Digitale Hilfsmittel Fernerkundung - Satellit

Vergleich Messwerte (NDVI) von einem N-Sensor und Landsat 8 Satellit in einem Rapsbestand

Quelle: Noack 2018

Digitale Hilfsmittel Fernerkundung - Satellit

Beispiel Climate Field View

Aufnahmedatum: 20.04.2021

■ BBCH-Stadium: ~ 30

- Index: Wasserverfügbarkeit
- Aufnahmedatum: 20.04.2021
- BBCH-Stadium: ~ 30

Digitale Hilfsmittel Fernerkundung - Drohnen

Beispielhafte Anwendungsgebiete

- Erfassung und Überwachung Pflanzenzustände (z.B. Rückschluss auf Einstellung Düngerstreuer)
- Unterstützung oder Erstellung Applikationskarten
- Technologie (Auflösung ~3-7cm pro Pixel)
 - **RGB-Kamera**
 - Multispektralsensoren
 - Hyperspektralsensoren

Digitale Hilfsmittel

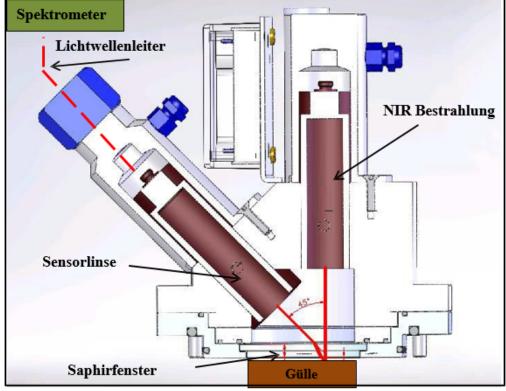
	N-Sensoren	Satellit	Drohne
Vorteile	Sensor direkt mit dem Anbaugerät verbundenVerknüpfung mit weiteren Daten	Große FlächenleistungKostenloser Datendownload	Flexible EinsetzbarkeitHohe Auflösung
Nachteile	 Teilweise nur tagsüber einsetzbar (passive Sensoren) 	WiederkehrrateNiedrigere AuflösungAbhängigkeit vom Wetter (Wolken)	FlugleistungFlächenleistungAnwender vor Ort

Digitale Hilfsmittel Organische Düngung und Ernte

- Einsatz von NIR-Sensoren für eine nährstoffbasierte Ausbringung
 - Verfügbare NIR-Sensoren auf dem Markt
 - John Deere HarvestLab 3000
 - Zunhammer Van-Control 2.0
 - MUT GmbH
 - Kaweco

 Alle sind von der DLG zertifiziert, teilweise in manchen Bundesländern für die Dokumentation zugelassen

11


2]

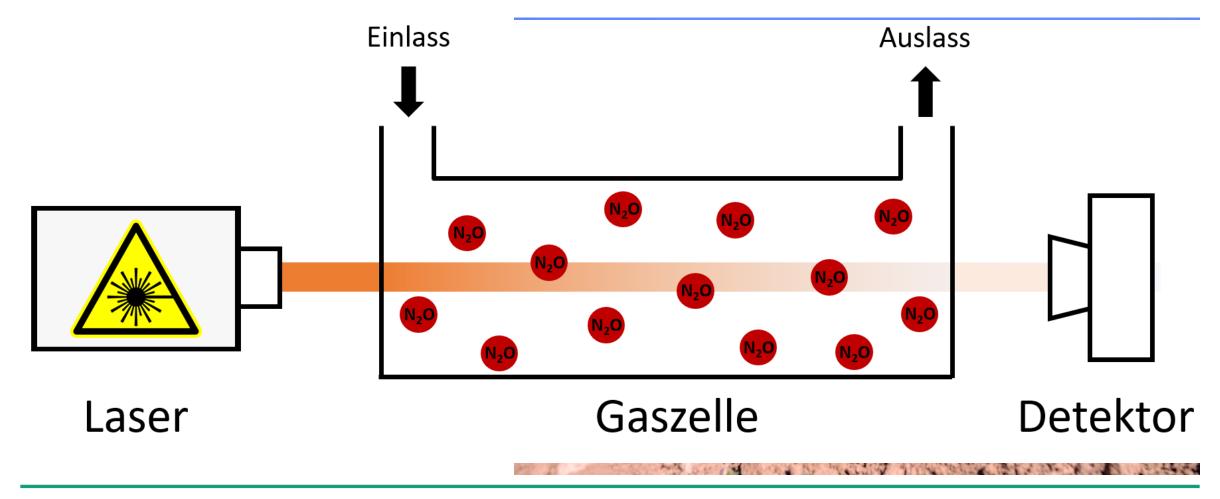
Digitale Hilfsmittel NIRS

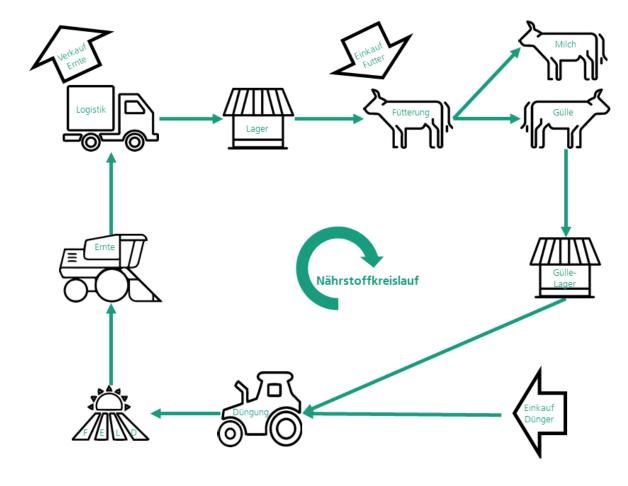
Nahinfrarot Spektroskopie (NIRS)

- Probe wird mit Licht der Wellenlänge von 800nm -1500nm bestrahlt
- Das reflektierte Licht der Probe wird mit einem Sensor gemessen
- Reflexionsspektren geben Rückschlüsse auf Inhaltsstoffe
- Hinterlegung entsprechender Kalibrationskurven

Abbildung 2: Funktionsprinzip der Nahinfrarotspektroskopie

Quelle: Eigene Darstellung nach ZIMMERMANN & HARTUNG (2009)

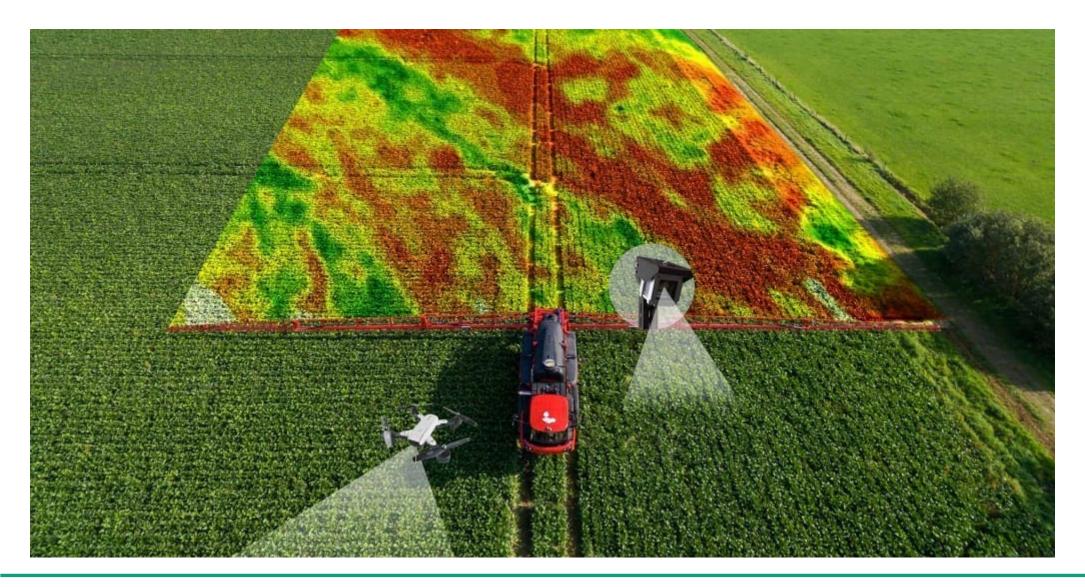

Digitalisierung während der Ernte - Ertragskartierung Feldhäcksler



Bodenstickstoffsensor

Messprinzip: Laserabsorptionsspektroskopie

Was ist das Ziel?


Nährstoffkreislaufe optimieren; Stickstoffnutzungseffizienz erhöhen!

Smart Spraying

Spot Spraying

Drohnen und Ausbringung von PSM

- Ausbringung PSM mit Drohnen
 - Aktuell <u>nur</u> in Weinbergen mit Steillagen zugelassen
 - Einsatz von Drohnenschwärmen möglich

https://webaro.de/produkt/dji-agras-t30/

Aussaat mit dem Roboter

- Farmdroid
 - Aussaat und Hacken (Rüben)
 - 900 kg
 - Ausgelegt für 20 ha

- Fendt Xaver
 - Aussaat
 - Gewicht 150-250 kg
 - Flächenleistung Schwarm (6 Roboter) rund 3 ha/h

[2]

53

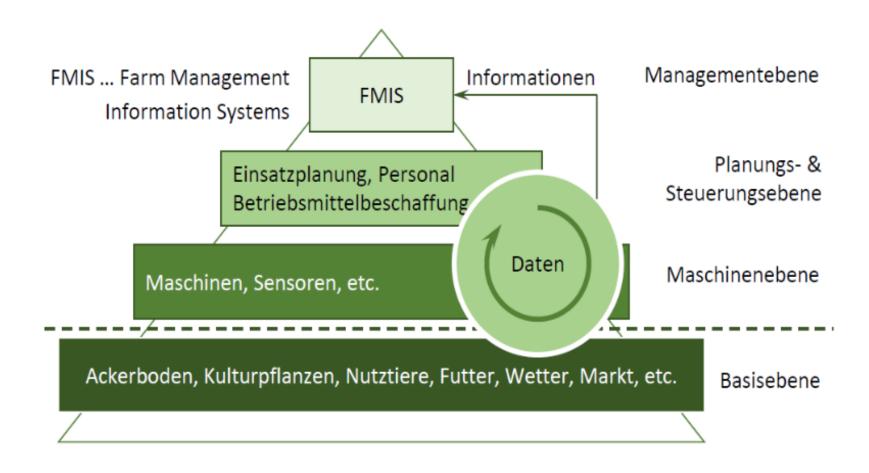
Studie "Scouting the Autonomous Agricultural Machinery Market"

Year 2035	Entirely human driven (no technological assistance)	Assisted human driven (with technological assistance, e.g. GPS)	Supervised autonomous	Entirely autonomous machine
High technology, large- scale markets (North America & Australia)	•			
Western European markets	•			•
Small-scale Asian markets				
Low technology, large-scale markets (Latin America)	•			
Eastern European mar- kets				
African & Middle East markets			•	

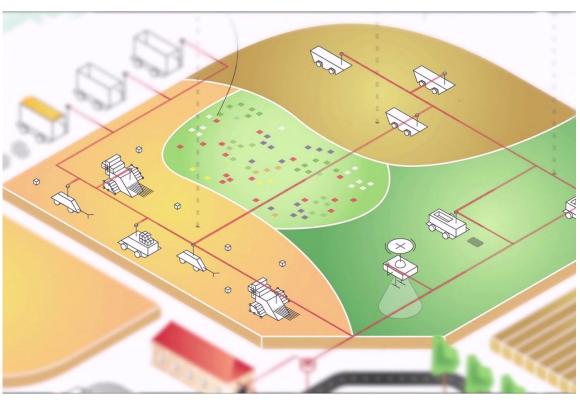
Year 2045	Entirely human driven (no tech- nological assis- tance)	Assisted human driven (with technological assistance, e.g. GPS)	Supervised au- tonomous ma- chines	Entirely autono- mous machines
High-technology, large- scale markets (North America & Australia)	•	•		
Western European markets	•	•		
Small-scale Asian mar- kets				
Low-technology, large- scale markets (Latin America)	•			
Eastern European mar- ket	•			
African & Middle Eastern Markets			•	•

Herausforderungen

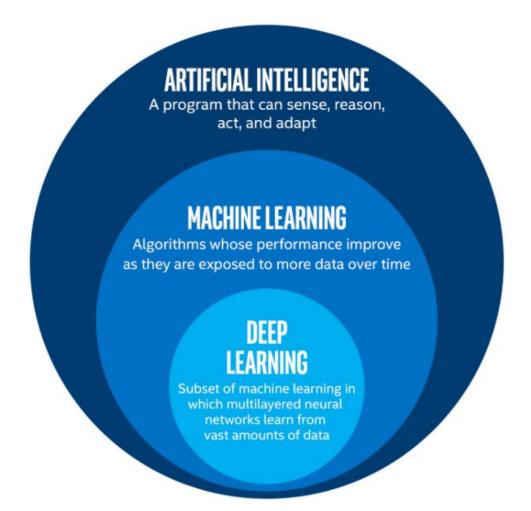
Sensors and Actuation Technologyrelated **Pattern Recognition** influence **Decision Making Process** factors **Complexity of Autonomous Actions** Standards Laws and Legislation **Trust and Acceptance** Change of climate and natural conditions Marketrelated Consolidation in the agricultural industry and change of food production systems influence factors Farm productivity and profitability Demographic and social change Political and economic framework Regulatory and pest/disease pressure


Realität in 2050?

Vielen Dank für Ihre Aufmerksamkeit!

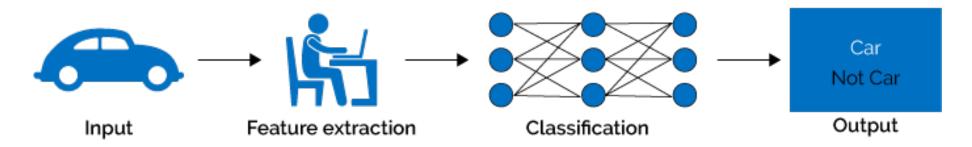


Planung → Analyse → Entscheidung

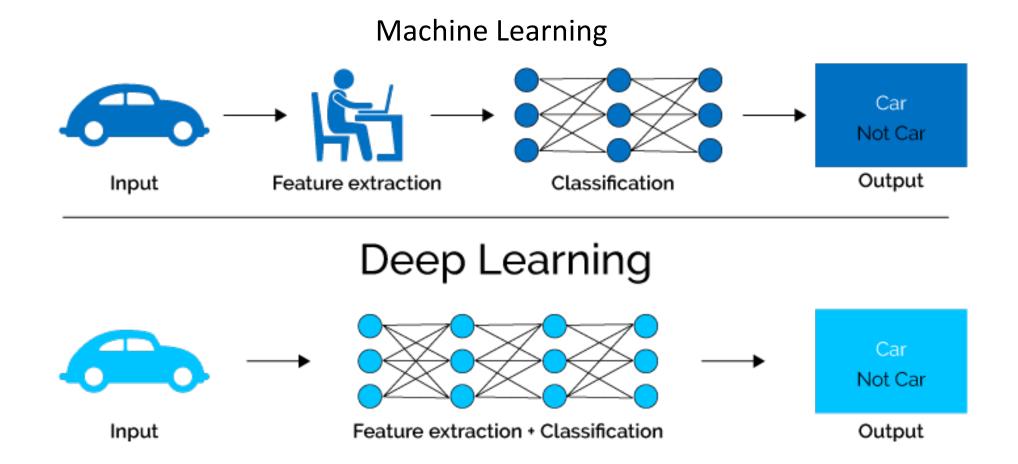


Agriculture of the Future **Remote Sensing** Big Data **Biodiversity** Artificial Intelligence Bioarcheology Biosystem Research Robotics Nano and Micro Electronics BioSerise

Spot Farming



AI, ML and DL



Machine Learning

ML and DL differ in their development

